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Lemma 0.1 (for Exercise 1X.5.3). Let zo € C. Fort € R, the following limit converges

uniformly.
R it
lim ¢

— =1
R—oo Rett — 2z,

Proof. Let € > 0. Set M = |z| (1+1). Fort € R, |e"| = 1.
| 7o
€

1
M<R:>|zo|(1+—)<R:>|zo|+— 20
€

< |Re"| = = < |Re"| — |z
€

By the triangle inequality, ' '
|Re"'| — |20] < |Re™ —

Thus
z . , 2
MS |Re™ — 2| = |20] < |Re™ — zle = |—2—| <¢
€ Reit — z,
We can rewrite this final inequality as
2 Re" — (Re™ — z Re'
+ — <'t 0) = - — 1| <e
Ret — z Rett — z Rett — z
and thus .
Rezt

llm ——— =1
R—oo Rett — z

Since M does not depend on ¢, convergence is uniform.

Proposition 0.2 (Exercise IX.5.3). Let zp € C\ R. Then
Imzy >0

1t 2
hm _/ dZ: 2 1
R—o0 21 J_p 2 — 2 —5 Imz <0




Proof. First, assume Imzy, > 0. For R > 0 define v to be the curve yz(t) = Re® for
t € [0, 7] and define I'g to be the closed curve I'r = [—R, R] U vz so we have

1 (' o1 1 1 1
lim —/ dz = — lim / dz—/ dz
R—o0 271 J_p 2 — 29 276 R—oo \ Jp, 2 — 20 vr 2 T %0

For R sufficiently large, 2y is is in the interior of I'g, and indr,(29) = 1. Thus

1 1
/ dz =21 = lim dz = 2m
Ip % — %0 R—o00 I'p % — %0
Now we compute the integral over vp.

1 T iReit g Reit
dz = / —dt = 2/ —dt
[/R Z— 20 o Re®t — zy o Ret — zy

We want to take the limit as R — oo. Using the previous lemma and the result from VI.11
of Sarason, we can move the limit inside the integral, to get

]_ m R it ™ R it T
lim dz:ilim/;dt:i/ lim —— dt:z'/ 1dt = i
R0 Jyp 27 20 R=oo Jo  Re — 2o o R Re' — zo 0

Thus for Im 2y > 0, we get

1 o 1 1
lim —/ dz:—,(27ri—7ri):§

R—oo 21 J_p 2 — % 2me

Essentially the same argument will show the other equality in the case Im zy < 0. Suppose
Im 2y < 0, and now take g to be the curve yg(t) = Re ™ for t € [0,7], and set I'g =
vr U [—R, R]. Then

1 (R o1 1 1 1
lim —/ dz = — lim / dz—/ dz
R—oo 21 J_p 2 — 2 276 R—oo \ Jr, 2 — 20 vr 2 T 20

For R sufficiently large, 2, is in the interior of I'g, and the winding number of I'g around zj

is —1, so
1 .
/ dz = —2mi
Lr # — 20

Now we compute the integral around ~g in this case. We could just conclude by symmetry
that the integral will turn out to be the same as the previous integral over a semicircle, or
we can just compute

1 T —iRe % T Re %
dz = ——dt=1 | ——dt
/m Z— 2y /0 —Re — 2z /0 Re + 2z

and taking the limit gives

1 T Re % 7 Re™ T
lim dz =1 lim —dt = Z/ lim ———dt = Z/ 1dt =i
R—oo |, 2 — 2o R—oo [y Re ™ 4 zg o B—oo Re™™ 4 2 0
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Thus if Im zg < 0, we get

1 S| 1 1
lim — dz = — (=271 — i) = — =
o 00 2M% J_p 2 — 20 ‘ 27rz'( ! ) 2

]

Proposition 0.3 (Exercise IX.17.1). Let G C C be connected and open. If z1,z € G, then
there is a polygonal path from zy to zy that lies in G.

Proof. Let G be as described and let z € G. Let U C G be the subset such that for every
w € U, there is a polygonal path from z to w. Since G is open, there is an open ball of some
radius €, containing w that is contained in G,

w C B(w,e,) CG

Then every point o € B(w, €,) can be connected to z via a polygonal path in G, since we
can take a polygonal path from z to w (in G) and then adjoin a straight line path from w
to o (which lies in G since B(w,¢€,) C G). Thus B(w,€,) C U. Thus, for any w € U, there
is an open ball containing w that is contained in U. Thus U is open.

Now suppose y € G\ U, that is, there is no polygonal path from z to w lying in G. Since
y € G, there is an open ball containing y contained in G,

y € B(y,e,) CG

If a point 8 € B(y,¢€,) could be connected to z via a polygonal path in G, then by using
that path and a straight line path from [ to y, we would have a polygonal path from y to
z, which is a contradiction. Thus there is no polygonal path from S to z lying in G. Thus
B(y,e,) C G/ \ U. Consequently, G \ U is open, so U is closed.

Since U is both open, closed, and not empty (z € U), and G is connected, U must be
equal to G. Thus any two points in GG can be connected by a polygonal path in G. m

Proposition 0.4 (Exercise 1). Let G be the infinite vertical strip {z+1iy : =1 <z < 1}. Let
f: G\{0} — C be holomorphic, so that lim,_,, f(z) exists and is in C. Then for z € (0, 1),

R

Jim (f(z +1iy) — f(—z +1iy))dy = 2mreso f
*J-R

Proof. For R > 0 and = € (0, 1), define 75, to be the closed rectangular curve with vertices
+x + iR, oriented counterclockwise. More concretely, vz, is the union of four line segments
as below:

YRz =[x — iR,z +iR|U [z + iR, -z +iR|U |[—x + iR, —x — iR| U |[—x — iR,z — iR]

By construction, the winding number of vz, around zero is one, so by the Residue Theorem,

/ f(2)dz =2miresy f = lim f(2)dz = 2miresy f
TR,z R—o0

TR,z



First we show that the contributions from the integrals over the horizontal line segments
cancel each other in the limit as R — co. We can write them as

/' F(2)dz = f@HMﬁ:—/”ﬁ+mM/
[x+iR,—z+iR)] T —z

/[_x_m@_m} f(2)dz = /_ ) f(t —iR)dt

Then their sum is

_/m f(t+iR)dt+/$f(t—z‘R)dt: ’ f(t—iR) — f(t +iR)dt

—x

—X

Let L = lim f(z). Let € > 0. Then there exists M > 0 so that

200
2| > M = |f(z) —L|<e
which implies
2] Jw] > M — |f(z) = f(w)] < 2€
Thus there exists M > 0 so that
|f(t —iR) — f(t +iR)| < 2e¢
thus

xT x

‘ xf(t—z’R)—f(tJrz'R)dt‘g/ |f(t—iR)—f(t+iR)|dt§/ 2edt — e

—T —T

Since € > 0 was arbitrary, this implies

xT

}%EEO‘/_xf(t—iR)—f(t+iR)dt‘ =0 = lim _xf(t—iR)—f(tJriR)dt:O

Now that we know that the horizontal parts of the rectangular integral don’t contribute, we

have
lim (/ f(z)dz +/ f(z)dz) = 2miresy f
R—oo [z—iR,x+iR] [—z+iR,—z—iR)]

We can rewrite these integrals as

R
/ fe)az = [ ifta iy
[—iR,a+iR] “R

R
/ f(2)dz = / —if(—z +1iy)dy
[—z+iR,—x—1iR] —-R

R

lim (if(x +iy) —if (—x +iy))dy = 2miresy f
R—o00 _R

Thus

and cancelling out a factor of 1,

R

I%im (f(:v +iy) — f(—x + iy))dy =2mresy f
—oo J_p



Proposition 0.5 (Exercise 2). Let G be the slit plane C \ (—00,0]. Let f : G — C be
holomorphic, so that

lim f(z)=0 llg(l)|z|f(z) =

Z—00

and for all x € (—00,0), we have locally uniform convergence of the following two limits.

lim f(z +iy) 1_13(1;17 f(z +iy)

y—0+t
Define functions ¢4, ¢_ : (—00,0) = C by

¢i(r) = lim flz+iy)  ¢-(z) = lim f(z+iy)

y—0t y—0—

Then for z € G,

¢ (x () .
= i
/() Rl—{%o 271 / Tr—z
Proof. Let z € GG, and define

w—z
Then g is holomorphic on G'\ {z}, and res, g = f(z). Let R > 0. Define

1
R = R2+§
Define curves g, ar, Mg, Xg by
1 T T
Prlt) = 3¢ te|-33)
ag(t) = R'e" te —7T+17T 1
R’ R
nr(t) :t+}% t€[—R,0]
0
w(t)=—t-  te[0R

Let I'g be the union of these four, so I'g is a closed curve. For sufficiently large R, z lies in
the interior of I'g. For R large enough that z is in the interior of ', the winding number is
indr, z = 1. Then by the Residue Theorem,

/ g(w)dw = 2miindr, (2) res, g = 2mif(2)
g
Since the RHS above is independent of R, taking the limit as R — oo gives

lim g(w)dw = 2mif(2)

R—o0 Tr

Now we compute the integrals over each of the pieces individually (ag, fr,nr, X&), starting
with Sg. (Throughout, we assume that R is large enough that z lies on the “outside” of the
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circle we’d get by “completing” Sr. We can assume this because we only care about what
happens as R — 00.) We can use the arc length estimate, we get

’/ dw‘ ‘ f(w ‘ < length(r) max {
Br pr W

— Z ’UJEﬂR

f(w) }

w—z

For w € B, |w| = }%, and length(8g) = %, so

et o 5 = { o )

As R — oo, for w € Bg, we have |w| — 0. By hypothesis, lir% |w| f(w) =0, so
w—

i e {110

R—oo weEPBR —Z

Combining this with the previous inequalities,

lim g(w)dw =0

R—o00 Br

Now consider ag. (We assume that R is large enough that z lies on the “inside” of the circle
we’d get by “completing” ar. We can assume this because we only care about what happens
as R — 00.) Note that length(ag) < 2w R’, so using the arc length inequality,

/ g(w)dw‘ < length(ar) max { f(w) } < 27 R’ max {M} — 9 max {R’f(w) }
apR wearp W — 2 wear | W — 2 wEQR w—z

For w € ag, as R’ — oo, |w — z| approaches |w| = R, so

/
lim max { } =1
R—ocow€ar | W — 2
Thus

R—o0 WEAR w—z R—o00 weEaRr

lim 27 max {R/f—(M)} =27 lim max{f(w)}

By hypothesis, lim f(w) =0, so
w—r 00

: < _
i | [ atwrto] < 2w i et =0
thus
lim g(w)dw =0
R—o0 aR

Now we consider ng.

[ S0 S, [ iR
/nRg(w)dw‘/an—zd ot e = [y
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Since lim+ f(z +1iy) = ¢, (x) converges uniformly,
y—0

0 , 0 , 0
R R
lim —f(x—i— i/R) dr = lim lim —f(a: + i/R) dr = lim —¢+<x)d:v
R—oo J_p(z+i/R) — 2 R—oo |_pR—oo (x+1i/R) — 2z Rooo | _pow—2z
We can treat yg similarly. We get a negative sign from x';(z), but then we replace —z by
x and change the integral from [0, R] to [0, —R], and then introduce another negative sign
from changing the order of integration from [0, —R] to [—R, 0], so the negative signs cancel

out.

[ fw) T fe(@)

/XR g(w)dw = /XR mdw =, WXR(I)dI
" flce—i/R) [T flz—i/R)
_/0 (—x—z'/m—zd””__/o w—i/R) -2
[ L,
R (CU - l/R) —Z
Since yl_i)rgl_ f(z +iy) = ¢_(x) converges uniformly,
0 fe—iyRr) 0 fle—i/R) 7 o (x)
e P s Rl N N ) ) ) (s

Summing up what we have shown so far,

lim g(w)dw =0
R—o0 8
R

lim g(w)dw =0

R—o00
aR
0
lim g(w)dw = lim (m—(x)da:
R—o0 nR R—oo | p X —2Z
0
lim g(w)dw = — lim gZﬁ_(x)alav
R—oc0 XR R—oo | _ p X —2Z

Using these equalities, we can can rewrite the integral over ' to get

2mif(z) = lim g(w)dw

R—o00 Tr

- }%gr;o (/BR g(w)dw + /aR g(w)dw +/ g(w)dw + /XR g(w)dw)

R
= lim g(w)dw + lim/ g(w)dw
R R0 Jxr

R—o00
0 0
= I%im ¢+—(x)das — I%im Mdas
—oo J_p T —2Z —0 ) p X —Z
0 —_
~ lim / ¢+ () @(w)dz
R—o0 _R xr— z



Thus

O (2 () .
1) 1%520271'2/ T—z
U

Proposition 0.6 (Exercise 3). Let \/- denote the principal branch of the square root on
C\ (—00,0]. Then for z € C\ (—o0,0],
11 / _ '
Vi om)o (+2)Ve
Proof. Define f(z) = \% Then f is holomorphic on C\ (o0, 0], and

lim |[f(2)] = lim —= =0 = lim f(2) =0

o A
AT = By g = P e

Define ¢ (x) = 11r£1+ f(z+iy) and ¢_(z) = lim f(z +1iy). For x € (—00,0), we have
y— -

llm Tty =iV —x
hm VT Fiy = =iV —x

y—0—

and

= lim |2|'Y? =0 = lim|z|f(2) =0
z—0 z—0

with locally uniform convergence, so

1 1
o) = i e T s
¢_(xr) = lim L

1 1 2 —21
¢+<—$>—¢_(—I):i l'_—i %ZZ\/E:\/E

Now we rewrite the integral as

~ lim _/ b1 (z) — o—( ) lim / P4 (— ¢_(— x)da:
z R—o0 271 r—z 2772 R—00 - —z

_13 xr 1
= L lim vz dr = 1 lim f dr = —/ (—d:r
0

21 Rooo Jg — — 2 T Rooo Jy x4z T T+ 2T

Thus

1 1 [ 1
%:%/0 T



