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Lemma 0.1 (for Exercise IX.5.3). Let z0 ∈ C. For t ∈ R, the following limit converges
uniformly.

lim
R→∞

Reit

Reit − z0

= 1

Proof. Let ε > 0. Set M = |z0|
(
1 + 1

ε

)
. For t ∈ R, |eit| = 1.

M < R =⇒ |z0|
(

1 +
1

ε

)
< R =⇒ |z0|+

|z0|
ε

< |Reit| =⇒ |z0|
ε

< |Reit| − |z0|

By the triangle inequality,
|Reit| − |z0| ≤ |Reit − z0|

Thus

|z0|
ε
≤ |Reit − z0| =⇒ |z0| ≤ |Reit − z0|ε =⇒

∣∣∣∣ z0

Reit − z0

∣∣∣∣ ≤ ε

We can rewrite this final inequality as∣∣∣∣ z0

Reit − z0

∣∣∣∣ =

∣∣∣∣Reit − (Reit − z0)

Reit − z0

∣∣∣∣ =

∣∣∣∣ Reit

Reit − z0

− 1

∣∣∣∣ ≤ ε

and thus

lim
R→∞

Reit

Reit − z0

= 1

Since M does not depend on t, convergence is uniform.

Proposition 0.2 (Exercise IX.5.3). Let z0 ∈ C \ R. Then

lim
R→∞

1

2πi

∫ R

−R

1

z − z0

dz =

{
1
2

Im z0 > 0

−1
2

Im z0 < 0
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Proof. First, assume Im z0 > 0. For R > 0 define γR to be the curve γR(t) = Reit for
t ∈ [0, π] and define ΓR to be the closed curve ΓR = [−R,R] ∪ γR so we have

lim
R→∞

1

2πi

∫ R

−R

1

z − z0

dz =
1

2πi
lim
R→∞

(∫
ΓR

1

z − z0

dz −
∫
γR

1

z − z0

dz

)
For R sufficiently large, z0 is is in the interior of ΓR, and indΓR

(z0) = 1. Thus∫
ΓR

1

z − z0

dz = 2πi =⇒ lim
R→∞

∫
ΓR

1

z − z0

dz = 2πi

Now we compute the integral over γR.∫
γR

1

z − z0

dz =

∫ π

0

iReit

Reit − z0

dt = i

∫ π

0

Reit

Reit − z0

dt

We want to take the limit as R→∞. Using the previous lemma and the result from VI.11
of Sarason, we can move the limit inside the integral, to get

lim
R→∞

∫
γR

1

z − z0

dz = i lim
R→∞

∫ π

0

Reit

Reit − z0

dt = i

∫ π

0

lim
R→∞

Reit

Reit − z0

dt = i

∫ π

0

1dt = iπ

Thus for Im z0 > 0, we get

lim
R→∞

1

2πi

∫ R

−R

1

z − z0

dz =
1

2πi
(2πi− πi) =

1

2

Essentially the same argument will show the other equality in the case Im z0 < 0. Suppose
Im z0 < 0, and now take γR to be the curve γR(t) = Re−it for t ∈ [0, π], and set ΓR =
γR ∪ [−R,R]. Then

lim
R→∞

1

2πi

∫ R

−R

1

z − z0

dz =
1

2πi
lim
R→∞

(∫
ΓR

1

z − z0

dz −
∫
γR

1

z − z0

dz

)
For R sufficiently large, z0 is in the interior of ΓR, and the winding number of ΓR around z0

is −1, so ∫
ΓR

1

z − z0

dz = −2πi

Now we compute the integral around γR in this case. We could just conclude by symmetry
that the integral will turn out to be the same as the previous integral over a semicircle, or
we can just compute∫

γR

1

z − z0

dz =

∫ π

0

−iRe−it

−Re−it − z0

dt = i

∫ π

0

Re−it

Re−it + z0

dt

and taking the limit gives

lim
R→∞

∫
γR

1

z − z0

dz = i lim
R→∞

∫ π

0

Re−it

Re−it + z0

dt = i

∫ π

0

lim
R→∞

Re−it

Re−it + z0

dt = i

∫ π

0

1dt = iπ
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Thus if Im z0 < 0, we get

lim
R→∞

1

2πi

∫ R

−R

1

z − z0

dz =
1

2πi
(−2πi− πi) = −1

2

Proposition 0.3 (Exercise IX.17.1). Let G ⊂ C be connected and open. If z1, z2 ∈ G, then
there is a polygonal path from z1 to z2 that lies in G.

Proof. Let G be as described and let z ∈ G. Let U ⊂ G be the subset such that for every
w ∈ U , there is a polygonal path from z to w. Since G is open, there is an open ball of some
radius εw containing w that is contained in G,

w ⊂ B(w, εw) ⊂ G

Then every point α ∈ B(w, εw) can be connected to z via a polygonal path in G, since we
can take a polygonal path from z to w (in G) and then adjoin a straight line path from w
to α (which lies in G since B(w, εw) ⊂ G). Thus B(w, εw) ⊂ U . Thus, for any w ∈ U , there
is an open ball containing w that is contained in U . Thus U is open.

Now suppose y ∈ G \U , that is, there is no polygonal path from z to w lying in G. Since
y ∈ G, there is an open ball containing y contained in G,

y ∈ B(y, εy) ⊂ G

If a point β ∈ B(y, εy) could be connected to z via a polygonal path in G, then by using
that path and a straight line path from β to y, we would have a polygonal path from y to
z, which is a contradiction. Thus there is no polygonal path from β to z lying in G. Thus
B(y, εy) ⊂ G/ \ U . Consequently, G \ U is open, so U is closed.

Since U is both open, closed, and not empty (z ∈ U), and G is connected, U must be
equal to G. Thus any two points in G can be connected by a polygonal path in G.

Proposition 0.4 (Exercise 1). Let G be the infinite vertical strip {x+ iy : −1 < x < 1}. Let
f : G\{0} → C be holomorphic, so that limz→∞ f(z) exists and is in C. Then for x ∈ (0, 1),

lim
R→∞

∫ R

−R

(
f(x+ iy))− f(−x+ iy)

)
dy = 2π res0 f

Proof. For R > 0 and x ∈ (0, 1), define γR,x to be the closed rectangular curve with vertices
±x± iR, oriented counterclockwise. More concretely, γR,x is the union of four line segments
as below:

γR,x = [x− iR, x+ iR] ∪ [x+ iR,−x+ iR] ∪ [−x+ iR,−x− iR] ∪ [−x− iR, x− iR]

By construction, the winding number of γR,x around zero is one, so by the Residue Theorem,∫
γR,x

f(z)dz = 2πi res0 f =⇒ lim
R→∞

∫
γR,x

f(z)dz = 2πi res0 f
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First we show that the contributions from the integrals over the horizontal line segments
cancel each other in the limit as R→∞. We can write them as∫

[x+iR,−x+iR]

f(z)dz =

∫ −x
x

f(t+ iR)dt = −
∫ x

−x
f(t+ iR)dt∫

[−x−iR,x−iR]

f(z)dz =

∫ x

−x
f(t− iR)dt

Then their sum is

−
∫ x

−x
f(t+ iR)dt+

∫ x

x

f(t− iR)dt =

∫ x

−x
f(t− iR)− f(t+ iR)dt

Let L = lim
z→∞

f(z). Let ε > 0. Then there exists M > 0 so that

|z| > M =⇒ |f(z)− L| < ε

which implies
|z|, |w| > M =⇒ |f(z)− f(w)| < 2ε

Thus there exists M > 0 so that

|f(t− iR)− f(t+ iR)| < 2ε

thus ∣∣∣∣∫ x

−x
f(t− iR)− f(t+ iR)dt

∣∣∣∣ ≤ ∫ x

−x
|f(t− iR)− f(t+ iR)|dt ≤

∫ x

−x
2εdt = 4xε

Since ε > 0 was arbitrary, this implies

lim
R→∞

∣∣∣∣∫ x

−x
f(t− iR)− f(t+ iR)dt

∣∣∣∣ = 0 =⇒ lim
R→∞

∫ x

−x
f(t− iR)− f(t+ iR)dt = 0

Now that we know that the horizontal parts of the rectangular integral don’t contribute, we
have

lim
R→∞

(∫
[x−iR,x+iR]

f(z)dz +

∫
[−x+iR,−x−iR]

f(z)dz

)
= 2πi res0 f

We can rewrite these integrals as∫
[x−iR,x+iR]

f(z)dz =

∫ R

−R
if(x+ iy)dy∫

[−x+iR,−x−iR]

f(z)dz =

∫ R

−R
−if(−x+ iy)dy

Thus

lim
R→∞

∫ R

−R

(
if(x+ iy)− if(−x+ iy)

)
dy = 2πi res0 f

and cancelling out a factor of i,

lim
R→∞

∫ R

−R

(
f(x+ iy)− f(−x+ iy)

)
dy = 2π res0 f
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Proposition 0.5 (Exercise 2). Let G be the slit plane C \ (−∞, 0]. Let f : G → C be
holomorphic, so that

lim
z→∞

f(z) = 0 lim
z→0
|z|f(z) = 0

and for all x ∈ (−∞, 0), we have locally uniform convergence of the following two limits.

lim
y→0+

f(x+ iy) lim
y→0−

f(x+ iy)

Define functions φ+, φ− : (−∞, 0)→ C by

φ+(x) = lim
y→0+

f(x+ iy) φ−(x) = lim
y→0−

f(x+ iy)

Then for z ∈ G,

f(z) = lim
R→∞

1

2πi

∫ 0

−R

φ+(x)− φ−(x)

x− z
dx

Proof. Let z ∈ G, and define

g(w) =
f(w)

w − z
Then g is holomorphic on G \ {z}, and resz g = f(z). Let R > 0. Define

R′ =

√
R2 +

1

R2

Define curves βR, αR, ηR, χR by

βR(t) =
1

R
e−it t ∈

[
−π

2
,
π

2

]
αR(t) = R′eit t ∈

[
−π +

1

R
, π − 1

R

]
ηR(t) = t+

i

R
t ∈ [−R, 0]

χR(t) = −t− i

R
t ∈ [0, R]

Let ΓR be the union of these four, so ΓR is a closed curve. For sufficiently large R, z lies in
the interior of ΓR. For R large enough that z is in the interior of ΓR, the winding number is
indΓR

z = 1. Then by the Residue Theorem,∫
ΓR

g(w)dw = 2πi indΓR
(z) resz g = 2πif(z)

Since the RHS above is independent of R, taking the limit as R→∞ gives

lim
R→∞

∫
ΓR

g(w)dw = 2πif(z)

Now we compute the integrals over each of the pieces individually (αR, βR, ηR, χR), starting
with βR. (Throughout, we assume that R is large enough that z lies on the “outside” of the
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circle we’d get by “completing” βR. We can assume this because we only care about what
happens as R→∞.) We can use the arc length estimate, we get∣∣∣∣∫

βR

g(w)dw

∣∣∣∣ =

∣∣∣∣∫
βR

f(w)

w − z
dw

∣∣∣∣ ≤ length(βR) max
w∈βR

{
f(w)

w − z

}
For w ∈ βR, |w| = 1

R
, and length(βR) = π

R
, so

length(βR) max
w∈βR

{
f(w)

w − z

}
= π max

w∈βR

{
|w|f(w)

w − z

}
As R→∞, for w ∈ βR, we have |w| → 0. By hypothesis, lim

w→0
|w|f(w) = 0, so

lim
R→∞

max
w∈βR

{
|w|f(w)

w − z

}
= 0

Combining this with the previous inequalities,

lim
R→∞

∫
βR

g(w)dw = 0

Now consider αR. (We assume that R is large enough that z lies on the “inside” of the circle
we’d get by “completing” αR. We can assume this because we only care about what happens
as R→∞.) Note that length(αR) ≤ 2πR′, so using the arc length inequality,∣∣∣∣∫

αR

g(w)dw

∣∣∣∣ ≤ length(αR) max
w∈αR

{
f(w)

w − z

}
≤ 2πR′ max

w∈αR

{
f(w)

w − z

}
= 2π max

w∈αR

{
R′f(w)

w − z

}
For w ∈ αR, as R′ →∞, |w − z| approaches |w| = R′, so

lim
R→∞

max
w∈αR

{
R′

w − z

}
= 1

Thus

lim
R→∞

2π max
w∈αR

{
R′f(w)

w − z

}
= 2π lim

R→∞
max
w∈αR

{f(w)}

By hypothesis, lim
w→∞

f(w) = 0, so

lim
R→∞

∣∣∣∣∫
αR

g(w)dw

∣∣∣∣ ≤ 2π lim
R→∞

max
w∈αR

{f(w)} = 0

thus

lim
R→∞

∫
αR

g(w)dw = 0

Now we consider ηR.∫
ηR

g(w)dw =

∫
ηR

f(w)

w − z
dw =

∫ 0

−R

f(ηR(x))

ηR(x)− z
dx =

∫ 0

−R

f(x+ i/R)

(x+ i/R)− z
dx
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Since lim
y→0+

f(x+ iy) = φ+(x) converges uniformly,

lim
R→∞

∫ 0

−R

f(x+ i/R)

(x+ i/R)− z
dx = lim

R→∞

∫ 0

−R
lim
R→∞

f(x+ i/R)

(x+ i/R)− z
dx = lim

R→∞

∫ 0

−R

φ+(x)

x− z
dx

We can treat χR similarly. We get a negative sign from χ′R(x), but then we replace −x by
x and change the integral from [0, R] to [0,−R], and then introduce another negative sign
from changing the order of integration from [0,−R] to [−R, 0], so the negative signs cancel
out. ∫

χR

g(w)dw =

∫
χR

f(w)

w − z
dw =

∫ R

0

f(χR(x))

χR(x)− z
χ′R(x)dx

= −
∫ R

0

f(−x− i/R)

(−x− i/R)− z
dx = −

∫ −R
0

f(x− i/R)

(x− i/R)− z
dx

=

∫ 0

−R

f(x− i/R)

(x− i/R)− z
dx

Since lim
y→0−

f(x+ iy) = φ−(x) converges uniformly,

lim
R→∞

∫ 0

−R

f(x− i/R)

(x− i/R)− z
dx = lim

R→∞

∫ 0

−R
lim
R→∞

f(x− i/R)

(x− i/R)− z
dx = lim

R→∞

∫ 0

−R

φ−(x)

x− z
dx

Summing up what we have shown so far,

lim
R→∞

∫
βR

g(w)dw = 0

lim
R→∞

∫
αR

g(w)dw = 0

lim
R→∞

∫
ηR

g(w)dw = lim
R→∞

∫ 0

−R

φ+(x)

x− z
dx

lim
R→∞

∫
χR

g(w)dw = − lim
R→∞

∫ 0

−R

φ−(x)

x− z
dx

Using these equalities, we can can rewrite the integral over ΓR to get

2πif(z) = lim
R→∞

∫
ΓR

g(w)dw

= lim
R→∞

(∫
βR

g(w)dw +

∫
αR

g(w)dw +

∫
ηR

g(w)dw +

∫
χR

g(w)dw

)
= lim

R→∞

∫
ηR

g(w)dw + lim
R→∞

∫
χR

g(w)dw

= lim
R→∞

∫ 0

−R

φ+(x)

x− z
dx− lim

R→∞

∫ 0

−R

φ−(x)

x− z
dx

= lim
R→∞

∫ 0

−R

φ+(x)− φ−(x)

x− z
dx
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Thus

f(z) = lim
R→∞

1

2πi

∫ 0

−R

φ+(x)− φ−(x)

x− z
dx

Proposition 0.6 (Exercise 3). Let
√
· denote the principal branch of the square root on

C \ (−∞, 0]. Then for z ∈ C \ (−∞, 0],

1√
z

=
1

π

∫ ∞
0

1

(x+ z)
√
x
dx

Proof. Define f(z) = 1√
z
. Then f is holomorphic on C \ (∞, 0], and

lim
z→∞
|f(z)| = lim

z→∞

1

|
√
z|

= 0 =⇒ lim
z→∞

f(z) = 0

and

lim
z→0

∣∣|z|f(z)
∣∣ = lim

z→0

|z|
|
√
z|

= lim
z→0

|z|
|z|1/2

= lim
z→0
|z|1/2 = 0 =⇒ lim

z→0
|z|f(z) = 0

Define φ+(x) = lim
y→0+

f(x+ iy) and φ−(x) = lim
y→0−

f(x+ iy). For x ∈ (−∞, 0), we have

lim
y→0+

√
x+ iy = i

√
−x

lim
y→0−

√
x+ iy = −i

√
−x

with locally uniform convergence, so

φ+(x) = lim
y→0+

1√
x+ iy

=
1

i
√
−x

φ−(x) = lim
y→0−

1√
x+ iy

=
1

−i
√
−x

Then using Exercise 2, for z ∈ C \ (−∞, 0),

f(z) =
1√
z

= lim
R→∞

1

2πi

∫ 0

−R

φ+(x)− φ−(x)

x− z
dx

As a preliminary simplification, if x ∈ (0,∞), then

φ+(−x)− φ−(−x) =
1

i
√
x
− 1

−i
√
x

=
2

i
√
x

=
−2i√
x

Now we rewrite the integral as

1√
z

= lim
R→∞

1

2πi

∫ 0

−R

φ+(x)− φ−(x)

x− z
dx =

1

2πi
lim
R→∞

∫ R

0

φ+(−x)− φ−(−x)

−x− z
dx

=
1

2πi
lim
R→∞

∫ R

0

−2i√
x

−x− z
dx =

1

π
lim
R→∞

∫ R

0

1√
x

x+ z
dx =

1

π

∫ ∞
0

1

(x+ z)
√
x
dx

Thus
1√
z

=
1

π

∫ ∞
0

1

(x+ z)
√
x
dx
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